Plot method for correlograms and variograms.
For examples, see eco.correlog
eco.cormantel
eco.variogram
eco.plotCorrelog(x, var = NULL, xlabel = NULL, ylabel = NULL, title = NULL, legend = TRUE, background = c("grey", "white"), errorbar = FALSE, intervals = TRUE, significant.S = TRUE, significant.M = FALSE, xlim = NULL, ylim = NULL, nsim = 999, interactivePlot = TRUE, meanplot = TRUE, randtest = c("permutation", "bootstrap", "none"), alpha = 0.05, quiet = FALSE)
x | Result of correlogram or variogram analysis |
---|---|
var | Individual variable to plot for multiple analyses with |
xlabel | Label for X axis (default: NULL) |
ylabel | Label for Y axis (default: NULL) |
title | Title of the plot (default: NULL) |
legend | Show legends in ggplot graphs? (default: TRUE) |
background | Background color ("grey" or "white") |
errorbar | Show error-bars? (default: FALSE) |
intervals | Show bootstrap CI in kinship analysis? (default: TRUE) |
significant.S | With single variables and permutation test: show different colours for significant points? (default: TRUE) |
significant.M | With multiple variables: show only significant correlograms? (default: FALSE) |
xlim | X axis limits (as vector: c(min, max); default: NULL) |
ylim | Y axis limits (as vector: c(min, max); default: NULL) |
nsim | Number of simulations for permutation or bootstrap tests. |
interactivePlot | Show an interactive plot via plotly? (default: TRUE) |
meanplot | Show a line with the mean, when the plot is for multiple variables? (default: TRUE) |
randtest | Randomization test (one of: "permutation", "bootstrap", "none") |
alpha | significance level for P (or P-adjusted) values (Default alpha = 0.05) |
quiet | print quietly? Default FALSE |